## Equal positive integers

Theorem: All positive integers are equal. Proof: Sufficient to show that for any two positive integers, A and B, A = B. Further, it is sufficient to show that for all N > 0, if A and B (positive integers) satisfy (MAX(A, B) = N) then A = B. Proceed by induction. If N = 1, then A and B, being positive integers, must both be 1. So A = B. Assume that the theorem is true for some value k. Take A and B with MAX(A, B) = k+ 1. Then MAX((A- 1), (B- 1)) = k. And hence (A- 1) = (B- 1). Consequently, A = B.